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Control of Josephson current by Aharonov-Casher phase in a Rashba ring

Xin Liu,! M. F. Borunda,! Xiong-Jun Liu,! and Jairo Sinova

1,2

'Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA
2Institute of Physics, ASCR, Cukrovarnickd 10, 162 53 Praha 6, Czech Republic
(Received 1 July 2009; revised manuscript received 4 September 2009; published 30 November 2009)

We study the interference effect induced by the Aharonov-Casher phase on the Josephson current through a
semiconducting ring attached to superconducting leads. Using a one-dimensional model that incorporates
spin-orbit coupling in the semiconducting ring, we calculate the Andreev levels analytically and numerically,
and predict oscillations of the Josephson current due to the AC phase. This result is valid from the point-contact
limit to the long channel-length case, as defined by the ratio of the junction length and the BCS healing length.
We show in the long channel-length limit that the impurity scattering has no effect on the oscillation of the
Josephson current, in contrast to the case of conductivity oscillations in a spin-orbit-coupled ring system
attached to normal leads where impurity scattering reduces the amplitude of oscillations. Our results suggest a
scheme to measure the AC phase with, in principle, higher sensitivity. In addition, this effect allows for control
of the Josephson current through the gate-voltage-tuned AC phase.
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I. INTRODUCTION

When a quantum system undergoes cyclic evolution mo-
tion in parameter space, its wave function acquires a geomet-
ric phase which strongly influences the transport property of
the system. The best known example of such phase is the
Aharonov-Bohm (AB) phase which is the relative phase shift
between two charged particle paths enclosing a magnetic
flux. In the last few years, the Aharonov-Casher (AC) phase,’
another example of a geometric phase, has been studied both
experimentally>? and theoretically*® in spin-orbit (SO)
-coupled mesoscopic semiconducting rings. As the charge-
spin dual of the AB effect, the AC phase in semiconductors
has attracted great attention because it can be easily con-
trolled by a gate voltage. So far, most of the literature has
focused on Rashba SO-coupled rings attached to normal-
metal leads. The AC phase has been confirmed in these type
of systems by observing the conductance oscillation as a
function of the gate voltage that is related to the SO interac-
tion (SOI) strength. However, due to the large background
current, the typical amplitude of the oscillation is not more
than 10% of the total observed conductance.’ The AC phase
has also been discussed for magnetic vortices in type-II su-
perconductors and Josephson-junction array.”-'° Recent stud-
ies in the effect of SOI on Josephson current''~!1> has focused
on heterostructures comprised of a two-dimensional electron
gas or a quantum dot placed between two superconducting
leads. A natural and interesting step is to combine the AC
and Josephson effects to explore regimes in semiconductor-
superconductor structures, which has not been explored to
our knowledge.

In this paper, we study the AC effect in a Josephson
current traversing a ring with Rashba-type SO interaction.
The Josephson current in a superconducting-normal-
superconducting (S/N/S) junction mainly originates from the
Andreev reflection,'®!7 (electrons being retroreflected to
holes) in two S/N interfaces. The excitation spectrum below
the superconducting gap consists of discrete energy levels,
called Andreev levels.'® Andreev levels are affected by both
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the phase and the transmission coefficient of electrons and
holes in the normal region.!®-2! We study here the effects of
SOI on the Andreev levels and the corresponding Josephson
current through the ring, illustrated in Fig. 1, both analyti-
cally and numerically. Our calculations predict oscillations of
the Josephson current controlled by the AC phase. This effect
can be used as an alternative sensitive way to detect the AC
phase. Because the dephasing electrons will not contribute to
the current in a Josephson junction but will contribute to the
current in a normal junction attached to two nonsupercoduct-
ing leads, the observed amplitude of the current oscillations
due to AC effect in a ring Josephson junction should be
much larger than the conductance oscillations in the normal
ring junction.

The outline of this paper is as follows. In Sec. II, we
introduce our theoretical model of the Josephson current in a
one-dimensional (1D) mesoscopic SO-coupled ring-shaped
Josephson junction. In Sec. III, we use the boundary condi-
tions of a multiple terminal junction and present the numeri-
cal calculations of the Andreev levels and the Josephson cur-
rents in limits not explored by the analytical solution. In Sec.
IV we present an experimental setup for the observation of
the effect and in Sec. V summarize our conclusions. In Ap-
pendix A, we present the details of the subgap states of qua-
siparticles in superconductor. In Appendix B we show the
details of calculating the eigenstates and the eigenenergies of
the ring in the tight-binding model.

II. ANALYTICAL DISCUSSION OF ANDREEYV SPECTRUM
DUE TO SPIN-ORBIT COUPLING

The Andreev bound state is a kind of electron-hole bound
state in the normal region of the Josephson junction depicted
by Fig. 2. In the superconductor leads, the excitation spec-
trum consists of the positive eigenvalues of the Bogoliubov
equation

(H(r) A

N _H(r))qr=5«p, (1)
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FIG. 1. (Color online) Two superconductor leads are attached at
the points =0 and )= separately on the ring, Josephson current
can be obtained in this junction.

2

VZ+U(r) - p, (2)

*

i
H(r)=- 5

where H(r) is the one-electron Hamiltonian, w is the electro-
chemical potential, U(r) is the scalar potential, A is the su-
perconducting pair potential, and m” is the effective mass.
When the excitation energy is less than the gap |Al, the qua-
siparticles of Eq. (1) in the normal region will be reflected by
the pairing potential and form the Andreev bound state. Un-
like the bound states in a usual square well, the Andreev
levels carry electric current which contributes to most of the
Josephson current.”! Generally speaking, the bound states
can be described in such a way that if we have a right-
moving subgap particle on the left S/N interface, Fig. 2, after
gaining a phase described by the matrix P, due to the par-
ticle propagation from left to right, reflection on the right
interface described by the scattering matrix S,, a further
phase described by the matrix P,; from the motion from right
to left, and a reflection on the left interface with the scatter-
ing matrix S, the state should come back to its original state.
This is true only when Det(1-P,S,P,S;)=0, which deter-
mines the quantized Andreev levels.

In zero magnetic field and zero SOI, neglecting Fermi
wavelength mismatch and the barrier on the S/N interface
and assuming that the transmission function of electrons in
normal region is energy independent, these discrete energies
are determined by?’

2o+ 0-2m. 2= (5]
arccos A y* 0=2mn, y= e)\a)

cos(6) =T cos(¢p) + R cos[(L_2a>E], (3)

& /A
where & =hvp/2A is the BCS healing length, ¢=¢,— ¢, is
the superconducting phase difference, n=0, £1, £2,..., fis

the additional phase due to a point impurity potential V&(x)
in the normal region, a is the distance between the point
impurity and left interface, and 7 and R are corresponding to
the transmission probability and reflection probability due to
a point impurity when energies are close to the fermi energy.
The term (EL/A&,) is approximately the phase shift acquired
from free electrons and holes propagation in the normal re-
gion. Equation (3) demonstrates that the Andreev level will
be determined by both the phase shift and the transmission
function of electrons and holes in the normal region. An
important limit is when the length of the junction is much
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FIG. 2. (Color online) A steplike superconducting pair potential
is assumed in the Josephson junction. The right-moving particle in
the normal region will come back to its initial state after two An-
dreev reflections. The change in the color of the arrow after each
reflection means an electron is reflected to a hole and a hole is
reflected to an electron.

shorter than the BCS healing length (L<<&,) so that y=0. In
this case, the Andreev level takes the form?!

E=Acos(g>=A\/1—Tsin2<i§). (4)
2 2

Next we focus on the Josephson current in a 1D Rashba
SOI ring; this current can be computed from the supercon-
ducting phase dependence of the Andreev bound states. For
our model calculations we assume a steplike superconduct-
ing pair potential A, which is zero in the Rashba ring,

Age 2, left of the ring
A=40,
Aoem/z’

in the ring , (5)
right of the ring

where +(—)¢/2 are the superconducting phase in the right
(left) leads.

Because the SOI keeps time-reversal symmetry, the coef-
ficient of the Andreev reflection is almost the same as with-
out SOL As a result, Eq. (3) is still valid qualitatively for a
ringlike junction with SOI. The 1D Rashba Hamiltonian for a

one-channel ring of radius r, without magnetic field reads*?*
" ﬁw()( .r9>2 ﬁw,( . )( .(9)
=—|—-i— | +—(cos @0, +sin ¢a,)| —i—
1D 2 (9(,0 7 POy ¢ y (9()0
ho
- iTr(cos @0, —sin ¢, (6)

where 7, is the radius of the ring, wy=#/(m*r) with m*
being the effective mass of the electron in the ring, and wg
=2a/(hry) with a being the strength of the spin-orbit cou-
pling. The eigenfunctions of this Hamiltonian take the form

sin(y/2)e_i"">

(0= exp(ineqo)( o)

cos(y/2) )

p! =exp(i ( A 7

en(@) = explim, @) _ sin(y2)e’® (7
The associated eigenenergies read

2
Ee,n=@|:(ne_l) +(ne_l> V1+Q12?+1:|_IU/’

2 2 2 4
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h 1)? 1\ —= 1
Ee,m=ﬂ{<mg+—> —<m6+—>\1+Q§+Z]—,¢,

2 2 2
(8)
1- \y’/l + lee * \/Qi+4Ce
n,= 5 5
VI+0%-1*\0%+4C, ©)
m,=

) )
where n, is the quantized angular momentum number of the
electron with spin along —z direction, m, is the quantized
angular momentum number of the electron with spin along z
direction, Qp=wg/ wy, w is the chemical potential of the sys-
tem, and Cezz—(f—;fl is a parameter independent of SOIL.

Since the hole is the time-reversal state of the electron and
SOI keeps time-reversal symmetry, we have H,=—H,. There-
fore, the hole states are the same as the electron states and
the associated eigenenergies take the similar form

fo, 1)\? 1\ —— 1
Eh,n=u——0{(nh—5> +<nh—5>\rl+Qi+Z],

h 1\? 1\ —— 1
Eh,m=/1«_ﬂ|:<mh+_) _(mh+_>\/1+Q12€+4_1]’

2 2 2
(10)
1-V1+0Q% = 03 +4C,
ny= 2 .
VI+Qi—1+0%+4C,
my = 5 , (11)

2u-E
where Ch=lﬁ"“w—ol.

We next consider the phase difference between the elec-
tron and hole propagation in the normal region. The phase
difference in the upper part of the ring for the spin-up and
spin-down quasiparticles after being Andreev reflected two
times take the form

VO +4C, - Q% +4C,
77-7
2

Yn= (ne_nh)'n-z

VO +4C, — Q2 +4C,
,
2

7m=(me_mh)77= (12)
and are therefore identical. Here 7, is the phase shift of
the quasiparticle with spin along —z(+z) direction. This iden-
tity reflects the fact that there is no spin splitting of the phase
shift in this case and is consistent with the time-reversal
symmetry of SOI. The phase acquired in the Andreev reflec-
tion from the interfaces lead to a different phase shift since
the spin-up electrons and spin-down holes have different
momenta.'> However this phase-shift splitting is very small
and will not affect the zeros of the Josephson current. There-
fore we will not consider this splitting in our discussion.
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The effect of the Rashba interaction on the transmission
function has been studied previously, with a conductance os-
cillation due to the AC phase confirmed experimentally>>
and theoretically.*~® Under the assumption of a perfect cou-
pling between the leads and the ring and neglecting back-
scattering, the transmission function takes the form*

= % + %COS[(\'l + Q,ZQ— )] = cos?[(V(1 + QI%)W)].

(13)

When considering the short-junction limit, L < &, the en-
ergy E of the Andreev bound state is affected by the normal-
state transmission 7 through Eq. (4). The Josephson current
in the low-temperature limit takes the form?!

T sin(¢)

h0d 28\ _1sin’(¢12)

eA  cos?[(V(1 + Q) m)]sin(¢h)

R . (14)
2% 1 - cos¥[(\(1 + Q) m)Jsin(/2)

Because the transmission probability is affected by the AC
phase, an oscillation of the Josephson current due to SOI
should also be observed. This oscillation will be different
from the conductance oscillation because even in the short-
junction limit, the current is nonlinearly dependent on the
transmission function. Although this conclusion is obtained
in the short-junction limit (L<<&,) since the zeros of the
transmission probability are only dependent on the SOI, a
similar oscillatin can be expected at any value of L/&, We
will show this to be the case in our numerical calculations.

III. NUMERICAL CALCULATION OF ANDREEYV LEVEL
AND JOSEPHSON CURRENT

A. Tight-binding model Hamiltonian, eigenvalues, and
eigenstates

In this section, we present our numerical investigation on
the relation of the Josephson current to the SOI. The effec-
tive tight-binding model Hamiltonian of the 1D Rashba ring
is given as’

N N
AT A jj+lioa’ At A
H= S 20864 S S 16777 8] 6 e,
7 -

J o0

j,j+] — tso

¢ (rla)dg

(cos @;jp1G +sin @; ;1 Gy)

* (ar (e ()
where ¢;=27(j=1)/N, @;;;1=(@;j+®js1)/2, Sp=2m/N, t,,
=a/2a, r is the radius of the ring and t,=#?/2ma* with a
being the lattice constant of the tight-binding model. The
length scale a is not related to the lattice constant of the
material but is an artificial length scale used in modeling the
continuum Hamiltonian, Eq. (6), and all physical results ob-
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tained should be independent of this length scale, e.g., the
Fermi energy scales considered should be near the bottom of
the tight-binding Hamiltonian band, E»<<4t,. The eigenfunc-
tions of this Hamiltonian are the same as in Eq. (7). The
eigenenergy is obtained as

E, =2ty l —cos| |n—=|dp+ 1+ — -,
2 ty

E,, =2ty 1 —cos| |m+—|dp—- B 1+ — -,
2 ty

Ehn == Een’ Ehm == Eem’ (16)
where

Ne(n) = (= Ny — B) Sp+1/2,

M) = (i )\e(h) + ﬁ)/5g0 - 1/2,

= [p+ (- )E]/zto} )

N, (p) = arccos ;
< { VI + (tso/to)z

Here = arccos[%]. The detailed derivation of the re-

VI+(1,,/10)?

sult shown above i(sl p;)esented in Appendix B. Defining the
AC phase as ¢ c=w,, m=(28/ 5¢—1) and comparing n and
m in the tight-binding model with those in the continuous
case, we can find that the term wg,m=(28/8p—1) is the
counterpart of the term (\1 +Q,2e— 1) in the continuous case
and they can be shown to be equal in the limit a— 0. In the
following discussion, we will often use the dimensionless
parameter w,, instead of #,/¢ in our numerical calculations
and plots as a measure of the SOI strength since the AC
phase is a monatomic increasing function of it.

B. Numerical calculation without disorder in the ring

If we ignore the disorder in the ring, the phase-shift ma-
trices P, and P,; are diagonal matrices and each diagonal
element takes the form exp[i(n,(,)—ny))7]. The S matrices
S; and S, are calculated by solving the boundary condition at
each joint of the superconductor leads and the ring. In a ring
system, the joint of the lead and the ring can be considered as
a three-way junction. The boundary condition of this three-
way junction in the tight-binding model is obtained from the
principle that the wave function at the joints is also the
eigenfunction of the system.”? This boundary condition in the
tight-binding model allows us to consider more realistic
cases such as having different effective mass of electrons in
the superconducting leads and normal region. Once § matri-
ces S; and S, are obtained and substituting them into the
bound-state condition,?4-26

Det(l - PrlSrPlrS[) = Oa (18)

we can find the relation among the Andreev level E, super-
conductor phase difference ¢, and the SOI strength. Equa-
tion (18) contains all of the Feyman paths and allows us to
consider the effect of multiple backscattering within the ring.
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FIG. 3. (Color online) Top: Andreev levels vs superconducting
phase difference ¢ for different SOI strength measured by AC
phase (w,,m). Bottom: Andreev levels vs superconducting phase
difference, ¢, and SOI measured by wy,. Here N=100, E¢=ty, A
=0.001¢7,, and &,=5003a.

In the previous section, to get the analytical result, we
made the assumption that the coupling between the ring and
the leads are perfect and backscattering was therefore ne-
glected. However, this idealization is not a good approxima-
tion in general since there is usually a very large Schottky
barrier on the superconductor/semiconductor interface and
the backscattering can also strongly affects the electron
transmission function through a ring. All of these factors are
considered in our numerical calculation.

Let us focus on the effects of the backscattering. In the
tight-binding model, &=%v,/2A=at, sin(ka)/A. We as-
sume A=O.00_1t0, E;=t, (i.e., one quarter of the bandwidth),
and &,=500v3a. First, we consider the circumference C, of
the ring is 100a, C,/ &,=0.12, and corresponding to the short-
junction limit case. We choose Ey=1f;, because the transmis-
sion probability of the electron through the ring oscillates
slower in this energy range compared to its zero minimal
value and when the energy is close to the bottom of the band.
As a result, the electron’s behavior in this energy range sat-
isfies the approximation we made in the previous section and
more directly confirms our analytical discussion. The param-
eters corresponding to the experimental system? will be dis-
cussed at the end of this section.

The Andreev levels are presented in Fig. 3 as a function of
the superconducting phase difference ¢ for different SOI
strength in the dimensionless variables E/A, wy,, and ¢/ .
When the AC phase is equal to (2n+ 1), the energy of the
Andreev states is A and independent of ¢. Since the Joseph-
son current is proportional to the first derivative of the en-
ergy E of the Andreev bound state with respect to the phase
difference ¢, this implies that the zeros of the critical current
occurs at the values (2n+ 1) of the AC phase. This conclu-
sion is consistent with our theoretical result in Eq. (14). In
Fig. 4, we show the Andreev levels and the normalized Jo-
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By = to, A = 0.001to, N = 100
1.5

FIG. 4. (Color online) The Andreev levels (left), E/A, and nor-
malized Josephson currents (right), (1/Ad)E/d¢p, vs superconduct-
ing phase for different SOI strength measured by AC phases (w,, 7).
Here N=100, E;=t;, A=0.001y, and &=500\3a.

sephson currents, (1/Ad)E/dp=-I/(2eA /1), associated with
the different AC phases vs superconducting phase difference.
The results show that the Josephson currents amplitudes are
tuned by the AC phase. Under the short-junction limit, the
energy of the Andreev levels is always equal to the super-
conducting gap A when the phase difference ¢=0 and mini-
mum when ¢=1r for any SOI strength. Therefore the value
of E(0)—E(m) is a direct indicator of the amplitude of the
critical current. E(m)—E(0) versus AC phase, ¢4c=w,,,
is shown in Fig. 5. The zeros correspond to the value
(2n+1)7 of the AC phase and the peaks are not always cor-
responding to 2n but show a doubled peaked structure cen-

Ej = to, A = 0.001to, N = 100

FIG. 5. (Color online) Difference of highest and lowest Andreev
levels vs SOI strength measured by w,,. The difference is propor-
tional to ihe critical current. Here N=100, Es=1,, A=0.001¢,, and
&=500\3a.
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FIG. 6. (Color online) Andreev levels as a function of super-
conducting phase difference ¢ for different SOI strength measured
by AC Rhase (wsom). Here N=2200, E;=t;, A=0.001z, and
£=50043a.

tered around 2n . This is because of weak localization
effect,’” similar with the AC-phase effect on conductance
oscillation in normal junctions.>?3

We next consider the long channel-length case, the cir-
cumference C, of the ring is greater than &,, where not only
the transmission function but also the phase shift due to the
AC effect will affect the Andreev levels. As an example, Fig.
6 plots the Andreev levels as a function of superconducting
phase difference ¢ with different AC phases in a long junc-
tion. Here the number of sites in the ring is changed from
100 to 2200, i.e., the circumference C, of the ring changes by
a factor of 11 and C,/ &,=2.54 while the other parameters are
unchanged. The Andreev levels are shifted due to SOI and
the Josephson current vanishes when w=(2n+1)7 as in the
case of the short junction and confirms that the backscatter-
ing will not affect the zeros of the critical current in the
Josephson junction in both the short and long channel-length
limits.

When the Schottky barrier and the Fermi wavelength mis-
match are also considered, the current-SOI relation will be
more complicated because the electron transmission function
will be strongly affected by these factors. However our nu-
merical results show that the zeros of the critical current are
the same to the analytical result Eq. (14). We explore the
Josephson current oscillations due to the AC phase at the
lower, more realistic, Fermi energy E;=0.1t;, and take A
=0.0002¢,, &=500V Sa. The density of the electron in the
experiment using HgTe heterostructures varied from n,p
=1.85X10" cm™ to n,p=2.21X 10" cm™? and the effec-
tive mass is m*=0.031m,.> To make our parameters match
the experimental data, by using the relation E;=0.1¢,
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FIG. 7. (Color online) Normalized critical current vs the SOI
strength measured by wy, in different length scale of the SOI ring.
Here the Fermi energy E;=0.17, the Fermi wavelength mismatch
between the SOI ring and the superconducting leads is :—;:0.2 and
N=200.

=h?/ 2m*a2=ﬁ2k;/ 2m”, 7Tn2D=k?, the parameter a is re-
quired to be around 1.5 nm. When we choose N=2200, the
circumference of the ring in our calculation is 3.3 wm which
is the same order to the ry=1 um in the experiment.” The
superconducting gap A=0.0002£y=0.002E,~1.72 K which
is the same order of the gap of the conventional supercon-
ductor such as Al where 7.=1.18 K.?® To capture the effects
of the Schottky barrier and the Fermi wavelength mismatch
on the short and long Josephson junction more clear, we
explore three ring length scales 200a, 2200a, and 10 000a,
which are 0.18, 1.97, and 8.94 times of &, separately, shown
in Fig. 7. The Schottky barrier is chosen to be 0.87, and the
Fermi wave-vector mismatch is kf/ ksf=0.2, where kf and ksf
are corresponding to the Fermi wave vector in the normal
region and superconducting leads.

The above three oscillations have a common characteris-
tic, when the AC phase is equal to (2n+1)m, the critical
current is zero. This means the AC effect is present even at
a large Shottky barrier and Fermi wavelength mismatch. In
the bottom panel of Fig. 7, the critical current has negative
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values, which would indicate that in this case there could
exists a 7 junction.”® This phenomena is due to the large
difference of the phase shifts acquired by the electron and
hole in the normal region which is related to the nonzero
momentum Q of the cooper pairs?>3* and has been observed
in the  superconducting/ferromagnetic/superconducting
junctions.’!'=33 However the 7 junction cannot be realized in
our model because it requires the condition L>§&, and the
electron will be totally decohered and the Josephson current
will not survive.

C. Discussion on the disorder through tunneling
Hamiltonian method

The advantage of observing the AC effect in the ring Jo-
sephson junction lays on the fact that the multiple scattering
of electrons due to the impurities do not contribute to the
Josephson current. The multiple-scattering process due to the
impurities can be considered through the Green’s-function
method. The tunneling Hamiltonian used in calculating Jo-
sephson current is given by

H= HR + HL + HT,
Hr= 2 (T Cpi Cuy + Tig Cp Cay + Tiyn i Cn
kq

+ T/iqicltlcql)’ (19)

where C(C}) is the annihilation(creation) operator in left
side, Cq(C;) is the one in right side, and T}, is the tunneling
amplitude of the spin-up electron from the left lead with the
momentum k to the right lead with momentum ¢g. In the
short-junction limit L < £, we can assume T}, to be a constant
T and the Josephson current is calculated from3°

y_8e f " Im[ (T8, ()T g @]}
D'(w)

. (20)

—o0

where D'(w)=Det[1-|T|*738} (w) 738 k(w)] and 73 is the usual
Pauli matrix. This method gives the same analytical form of
the Josephson current as in Eq. (4). However, when L> ¢,
the parameters of the normal material between the two su-
perconducting leads will affect the tunneling amplitude 7},
so strongly that the assumption of the constant T}, is not
valid any more. In this case we write our tunneling Hamil-
tonian as

H:HR+HL+HH+HT’

HT = E [Aknclu—(rL)Cjk_g(rL)dn’—u’(rL)dlw'(rL)
kq

+[A,,Cl(rR)CL_(rR)dyr_o(rp)d, o (rg) +H.c.,

qn

H,=E(n)dd,, (21)

where djl(dn) is the creation(annihilation) operator of the
electron in the normal material and the index n includes all
the quantum numbers such as momentum and spin, H,, is the
Hamiltonian of the normal material, E(n) is the eigenvalue of
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H,, and A, is the transmission amplitude on the left S/N
interface. Hy in Eq. (21) describes the Andreev reflection and
can allow us to consider the effect of the phase shifts ac-
quired in the normal region. The current in this case is modi-
fied to read

8e f [ (7,85 ()T gh(w)], 1}
I=— dw Im
nl. D'(w)

Ty=AG (rgorpn),  To=ApGrgorn’),  (22)

where é’(“)(rR,rL,n,U) is the retarded (advanced) Green’s
function of the electron with energy E(n) and spin o in the
normal region. When rgp—r;=L<§), é’(“)(rR,rL,n) is close
to the Fermi distribution f[E(n)] and Eq. (22) has the same
form to its short-junction limit Eq. (20). However when
re—rp=L~§&, because E(n)=-E(n’'), G'(rg,r.,n), and
G“(rg,r;,n') are not conjugate to each other. As a result,
even the product G'(rg,r;,n)G*(rg,ry,n') from the trajecto-
ries with an identical ensemble of scattering centers, which is
corresponding to the ladder correction, is complex with a
random phase instead of real. Therefore the ladder correction
due to the impurity scattering is zero in the Josephson-
junction current. This is very different to the calculation of

the conductance which is proportional to |G"(E=E,)P,
where the ladder correction due to the impurities is
nonzero.?” This is why not like it does in the normal junction,
the impurity effect will not contribute a background current
which has nothing to do with the phase interference in the
Josephson junction. This can be confirmed from the experi-
mental data of the Fraunhofer-type interference pattern of the
critical current in the Josephson junctions.’® In those experi-
ments, an oscillation with an amplitude of almost 100% of
the total current were observed.’® Similarly in the ring Jo-
sephson junction with SOI, an oscillation due to the AC
phase with a larger amplitude than that in the conductance
experiments is expected.?> Especially if a one-channel ring
limit is achieved, a 100% oscillation due to the AC phase
should be observed. When the normal material is semicon-
ducting, a tunable Josephson current controlled by a voltage
can be obtained creating a Josephson field-effect transistor
(FET),3-%! where the ring Josephson junction can be
switched on and off by tuning the AC phase and carrier con-
centration. Recently, a voltage of =70 V has been reported
to switch off a Al/InAs/Al Josephson junction.*! Our result
provides a possible way to control the Josephson current by
a gate voltage which can be as small as several meV (Ref. 2)
and much smaller than the gate voltage in normal Josephson
field-effect transistors.3-4!

IV. EXPERIMENT PROPOSAL

In this section, we discuss the feasibility of experiments to
observe AC phase through the oscillation of the Josephson
current. Our experimental proposal is based on the radio-
frequency method*#>#3 which is a reliable method to mea-
sure the current-phase relation (CPR) of the Josephson

PHYSICAL REVIEW B 80, 174524 (2009)

SOI E .................................. E
ring}
Washers | : % T

Tank circuit

FIG. 8. Proposed experimental setup.

current,** especially for the small critical current even
less than 50 nA.** Therefore this technique makes it possible
to detect CPR in a superconducting-semiconducting-
superconducting (S/Sm/S) junction although there is a large
Schottky barrier on the S/N interface. Our S/Sm/S junction,
depicted in Fig. 1, is incorporated into a superconducting
quantum interference device washer of very small and well-
defined inductance L, which is coupled inductively to a high-
quality tank circuit in resonance with quality Q and coupled
strength k Fig. 8.

The Josephson current /; in the ring and the phase differ-
ence « of the dc and voltage in the tank circuit have the
relation**

an(e) = COBF (&)
1+ ()
¢
1($)= kzlé . fo tan a(d)deb, (23)

where B=2mLI./®, is the normalized critical current, f(¢)
=I,(¢)/I. is the normalized current-phase relation, and /. is
the critical current. Therefore, we can observe the oscillation
of the Josephson current induced by AC phase by detecting
the phase difference of the current and voltage in the tank
circuit. According to the amplitude of the Josephson currents
and the size of the Josephson junctions in Refs. 41, 45, and
46 we can expect a Josephson current up to /,.=1 uA in the
ring shape structure whose radius is I um and width of each
arm is 300 nm. If we choose the inductance of the supercon-
ducting loop L=80pH,?® k*Q=0.1, and the normalized criti-
cal current B=2mLI./ ®(=0.25, the phase difference « of the
current and voltage in the tank circuit will be in the range
(=0.02 rad, 0.02 rad).

V. CONCLUSIONS

In this work we have studied the interplay between the
critical Josephson current in a ring junction and the AC ef-
fect. We have calculated the Andreev levels in a Rashba-type
SOI ring system attached to two superconducting leads both
analytically and numerically. Numerically, using the bound-
ary condition of the multiple terminal junction in the tight-
binding model, we calculate the Andreev levels and the Jo-
sephson currents in both short and long channel-length limit.
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After considering the backscattering in the SOI ring, large
Schottky barrier on the S/N interface, Fermi wavelength mis-
match between the superconducting leads and semiconduct-
ing ring, and the effect of the impurities in the ring, we find
that the oscillations of the Josephson current due to the AC
phase are robust. The amplitude oscillation of the Josephson
current due to the AC effect in the dc Josephson junction is
expected to be larger than the conductance oscillations ob-
served in normal ring structures without superconducting el-
ements. These results suggest an alternative and likely better
way to observe the AC phase. Also, since one-period oscil-
lation of the AC phase only needs several meV, we provide a
possible way to create Josephson-junction FETs controlled
by a voltage on the order of meV.
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APPENDIX A: THE QUASIPARTICLE STATE WITHIN
THE GAP

We presents the detail discussion of the quasiparticle
states in the gap in this appendix. As we know that the qua-
siparticle states in the superconductor can be described by

the Bogoliubov equation
u(r
{5)
vi(r)

(Ho> AU))CMﬂ)_
A —HEO o )~

where H(r) is the one-electron Hamiltonian, defined as

(A)

2

VZ+U(r) - w, (A2)

h
H(r)=-
(=-5~
where u is the electrochemical potential, U(r) is the scalar
potential, and m* is the effective mass. For a homogeneous
superconductor with A(r)=A, and U(r)=0, the solution of
Eq. (A1) can be written as

r 0
()i, o)

o\ 722 2
Vo= sin(—)e"¢, E= \/( = ,u) + ASA()’ (A3)
2 2m

where cos 0=(%— W)/ E, ¢ is the phase of the supercon-
ductor. |k| > ky is corresponding to electronlike quasiparticle
because in this case, cos 6>0, 6/2<w/2, cos(6/2)
>sin(6/2). For the similar reason, |k<k] is corresponding
to the holelike quasiparticle. Here only the positive energy E
is considered. In 1D case, given energy E> A, there are four
quasiparticles, two of them are the right-moving particles
and the other two are the left-moving particles. When con-
sidering E<A, according to Eq. (A3), the wave vector k
satisfies
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(A4)

where e=VA?—E?>0. Therefore the wave vector k has to
take the form

k=k,+ik;, (A5)
where the real part and imaginary part of k satisfy
h2k k;
— =+
m
h2
Sk = k) = =0, (A6)

2m

Given energy E <A, the wave vectors of the quasiparticles in
this case are corresponding to the four solutions of Eq. (A6).
The solution of Eq. (A1) will be

V2 E+ie
Uug = 7, Vo= A

e uy. (A7)

As a result, [ug|=|ve|=5.

If a normal conductor is coupled to a superconductor, a
unique reflection with energy less than gap, namely, Andreev
reflection, can be observed. To calculate the scattering matrix
in the interface, we must know the input and output particles,
which are corresponding to the right-moving and left-moving
particles separately, in the superconducting lead. It is easy to
find them when the energy is larger than the superconducting
gap. However, when the energy is less than the supercon-
ducting gap, the wave vector has to be analytic continuous to
complex plane Eq. (A5). It is hard to say which solution is
corresponding the left-moving or the right-moving particle.
We will figure out this problem by some concepts from
retarded Green’s function.

Retarded Green’s function in the position and energy
space, say G(x,x’ ,E,), is viewed as two traveling wave func-
tion outward from a source term &(x—x"). The opposite case
is so-called Advanced Green’s function. One way to calcu-
late S matrix is to use retarded Green function*’*® but not
Advanced Green’s function because we are interested in the
case that if there is an excitation at some point, how the
excited particle travels away from the point of the excitation.
This kind of retarded Green’s function of a fermion is
I fwﬁdk, where 6> 0, therefore we have a pole where
E=E+i6. Physically we hope that when x>0, the integral
gives us the right-moving particle and when x <0, the inte-
gral gives us the left-moving particle.

Now let us come back to our question. In our discussion,
the energy E is chosen to be positive. As a result, E;, must be
in the first quadrant of a energy complex plane and just a
little bit above the real axis. Actually, Eq. (A5) is a general
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form of wave vector. k; is infinitely small when energy E
> A and finite when energy E<<A. Considering E>A and
according to Eq. (A5), the energy of the quasiparticles can be
written as

h2k? o, s h2k k;
E = M) F AN+ 2
2m 2m

m
12k? 2 12Kk? 12k k;
z\/( *—,u> +A A +i| -] —,
2m 2m m
(A8)

here k; is infinitely small and we neglect the kl-2 term. Since
E, is in the first quadrant of the complex plane,

722 W2k, k; . . . .
(Zm*— wm)—,—>0. For the right-moving electronlike quasi-

particle W,, since (22‘5— n) >0 and k>0, k; must be also
larger than zero, say the wave vector of the right-moving
electronlike quasiparticle of the first quadrant in complex
wave-vector plane. For the similar reason we have the results
that the left-moving electronlike quasiparticle WV, is in the
third quadrant, the right-moving holelike quasiparticle ¥, is
in the second quadrant and the left-moving holelike quasi-
particle W, is in the fourth quadrant.

Although we get this result in the case E>0, it is also
valid when E <0 because for the wave vectors, the case of
E <A is just the analytical continuous of that of E>A. The
wave functions of these four quasiparticles within the super-
conducting gap are

v | 7 il ilkhr
%e—wze—iqb
’/_
\2
wo=| % |
/ e—wze—id)
\2
wo=| % |k
Leiae—iqﬁ
\/5
2 il il e
\Plh_ ”r— e ey (Ag)
\?eiae—z¢

where a=arccos(E/A).

An interesting conclusion should be noticed that in both
the left and right superconducting leads, exponentially decay
quasiparticles are always the input particles and exponen-
tially increase quasiparticles are always output particles. The
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velocity of the electrons and the current carried by these
electrons can be calculated through the velocity operator and
electron current operator as

v=(V[5|¥)
Jd
—ih— 0
= (u(’; US )g—i(k,—ik,-)x ox ei(kr”ki)x(uo )
Jd
0 ih— oo
ax
-0, (A10)
1= (W|]|¥)
Jd
- iﬁ&_ 0
. X
=e(uy vg)e krikix p
0 —ih—
ox

% ei(k,ﬂ'k,—)x(u() )
Vo

fik,

£

e 2k (Al1)

=e

where e is the charge of an electron. The velocity of these
decay quasiparticles are zero but the current carried by these
are not zero. Although Eq. (A11) shows that the current car-
ried by the quasiparticle decays, because the quasiparticle
will decay to the cooper pair which can carry the supercur-

rent, the total current, quasiparticle current plus supercurrent,

. ehk,
s [I=—

m -

APPENDIX B: SPIN-ORBIT COUPLING IN
A TIGHT-BINDING MODEL
RING SYSTEM

There have been many theoretical papers talking about the
Rashba interaction in a ring system, such as the eigenenergy,
wave function, and so on by the analytical method in the
continuous case and the exact transmission function through
the numerical calculation in the tight-binding model. How-
ever the eigenenergy and wave function in the tight-binding
model is still undiscussed. Although this is easy to be de-
rived, we write down the conclusion briefly to make our
paper more readable.

The Hamiltonian of the SOI ring system has been given in
Eq. (15). Now we give this tight-binding model Hamiltonian
of the electron around the point ¢=0,
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21 0 — 1, it,,e'%?? 0 0
0 21 it e '%¢? — 1 0 0
— 1 — it ,e'?? 21, 0 —ty ity 02
H= _ —idp2 _ e Lide2 _ > (B1)
itg,e 1o 0 2ty it e to
0 0 — 1 —it,,e7 ¢ 2y 0
0 0 —it,,e 102 f 0 21,

sin(z)e‘i(”‘l)‘s‘P cos<z>e‘”’5¢’
2 2
COS(Z>e—in&p _ Sin(z>e—i(n+l)§<p
2 2
o) 2
sin| = cos| =
2
P

2
e,n

s \Pe,m = . (BZ)
cos(%) —sin(z)

2

Sin(l’)ei(n—l)&p cos(z>ei”5‘p

2 2

COS<Z>€M&’D _ sin<z>ei("+1)5¢
2 2

The eigenfunction of this tight-binding model Hamiltonian is the same as the eigenfunction of the continuous Hamiltonian.
Acting the tight-binding model Hamiltonian Eq. (B1) on the wave function Eq. (B2) and focusing on ¢=0 gives us

1
2t5[1 = cos(n—1)8¢] 2t,, sin(n——)5 .
v {sm(y/2) }
o . 1 cos(y/2)
2t,, Sin n-> So  2to[1—cos(ndp)]
2t'< l>5'<15) 2t ( 1)6
| | sin(y/2) o sin{ n == 8¢ sin| - dp o sin\ =2 |8
=2t 1 —cos n-y ¢ |cos 55@ (+/2) + 1 | .
cos
7 2t,, sin(n - —) o 2t sin(n - —) o sin(—&p)
2 2 2
{sin(y/Z) } (B3)
cos(y/2) |’
2101 (mép)]  2t,, si ( 1)5
- 1=
. ol 1 — cos(mSep so sin| m + > |:COS(’)//2) ]
em . 1 —sin(y/2)
2t,, Sin m+5 8¢ 2tp[1 —cos(m +1)5¢]
2t ( +l)5 (16) 2t ( +l>5
q | cos(y2) o sin{ m + = |0 sin| ~5p so Sin{m + 2 |5
=2ty| 1 —cos m+5 ¢ |cos 55('0 in(4/2) + | : |
—sin
Y 2t5, sin(m + —)&p 2ty sin(m + —) o sin<—5<p>
2 2 2
/2
[ s | .
—sin(y/2)

When y= arctan[mhﬁm], we have

E,,=2to(1 =1+ (t,,/ty)*cos[(n - 1/2) 8¢ + B]),
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E t )’ 1
ny =) *arccos| | 1 = — |/\[1+|— ] |=-B(/dp+—,
2ty to 2
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E, = 2to(1 =1+ (t,/19) cos[(m + 1/2) Sp — B]),

+ {(1 E )/ 1+<t“’>2]+/3 /8 1
m+ =) X arccos - - -,
- 21t 1y ¢ 2

cos(8¢p/2
V1+(t,,/10)?
the counterclockwise rotation electron and n_ and m_ are
corresponding to the clockwise rotation electron.

We next show the equivalent between the continuous limit
and the tight-binding model by giving the detail proof of our
statement that the term w,,=(28/5¢—1) is equal to
(V1 +Q12e‘ 1) in the limit a — 0. According to the L’ Hopital’s
rule, the term (28/ 8¢—1) satisfies

26 _fl@) . f(@
im— = =lim s
a—06p gla) a—0g'(a)

where B=arccos| 1, n, and m, are corresponding to

cos(S¢/2)
\rl + (t_w/to)z ’

fla)=2 arccos[

cos(al/2r)
=2 arccos| —— |,
V1 + (amalh?)?
gla)=S6p=alr (B7)
because lim,_,, 8=0 and lim,_, S¢=0. If we define u(a)
=La—/2r), we have
V1+(amalh?)?
Fla) d arccos(u) 2 du (B8)
4 a)= = - -, B
da V1= u2 da
where
Lo cos*(a/2r)

1+ (a?>m?a®/h*)
1+ a’m?a*h* - cos*(al2r)
a 1 + &?m?a*/h?

a2m2a2 a
~l4—r—|1-—

K 472

(B5)
(B6)
|
2 2
S M 1

=a< pE +m>, (B9)

du  172r sin(a/2r)  cos(a/2r)a®m’a/h*

da 1+ 2m2a¥t* (1 + &m*ah*)>?
( 1 azmz) (B10)

=—a|l—+ .
“ e K

By inserting Egs. (B9) and (B10) to Eq. (B8), we find that

lim f"(a) 2 <a2m2 1 )
im f'(a) = a +—
a—0 aN Pmh* + /477 nt 4
1 a*m?
=2 E+ Pra (B11)

Substituting Eq. (B11) to Eq. (B7), we obtain the form

. 2B f'(a=0)
lim—=——"=
a—06p g'(a=0)
B 2N1/4r + a’mPalk?
- 1/r
4aPm*r?
h4

—

=V1+03, (B12)

which is exactly the same as our statement.
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